WT cross section tension verification using S16-19:

1.1.1 Description

The test verifies the tension strength of WT shape section column.

The column is subjected to end tension.

1.1.2 Background

The test verifies the available tension strength of a WT 230x64 column shown in the figure below. The column is subjected to tension of 80 kN from dead load and 250 kN from live load. Material G40.21M-350W (F_y =350 MPa) steel is selected for this example.

1.1.2.1 Model description

- Analysis type: static linear (plane problem)
- Element type: linear
 - The following load case is used:
- Load cases: F_D= -80 kN; F_L= -250 kN

Metric System

CREATE

<u>Geometry</u>

Cross section:

Dimensions and su	urface area	<u>Properties</u>
Dimensions and su	Inface area Area A 81.90 cm² Depth d 23.40 cm Web thickness tw 1.22cm Flange width b 28.20cm Flange thickness tr 1.96cm Filet radius 2.14cm	Properties Strong Axis (Y-Y) l_y 3430 cm ⁴ S_y 184 cm ³ Z_y 326 cm ³ Weak Axis (Z-Z) Iz I_z 3650 cm ⁴ S_z 259 cm ³ Zy 397 cm ³ Shear area Ay A_y 46.06 cm ² A_z 28.55 cm ² Torsional constant J J 83.7549 cm ⁴ Warping constant Cw Cw 1741.05 cm ⁶
	<u>WT 230x64</u>	1

Beam length: L =400 cm

Materials properties

Steel G40.21M-350W is used. The following characteristics are used in relation to this material:

- Yield strength fy=350 MPa
- Longitudinal elastic modulus: E=200000 MPa
- Shear modulus of rigidity: G=76923.1 MPa

Boundary conditions

The boundary conditions are described below:

- Outer:
 - ► Support at X = 400 cm (Restraints: TX, TY, TZ, Rx, Ry, Rz)
- Inner: None.

Loading

The column is subjected to the following load combinations and actions:

- ULS: q = 1.25 x D +1.5 x L
- LSS: q =1 x D + 1 x L

CREATE

SIMULATE

1.1.2.2 Reference results in calculating

Reference solution

From the NBC 2015, the required tension strength for the design is:

ULS	
$ Fx = 1.25 \times 80 + 1.5 \times 250$	
$ Fx = 475.0 \ kN$	

In order to verify the plasticity of the gross section with the factored load computed at ULS:

The Factored tensile resistance T_r of a member subjected to axial tension is computed from the clause 13.2:

$$T_r = \phi \times Ag \times Fy$$

ULS $\phi = 0.9$ $T_r = \phi \times Ag \times Fy = 0.9 \times 8190 \times 350 = 2579.85 \, kN$ $T_f = Fx = 475.0 \, kN < T_r = 2579.85 \, kN$ O.K Work ratio: $r = \frac{T_f}{T_r} = 18\%$

Since the member is under tension forces only the verification of bending resistance and combined forces is unnecessary.

Finite elements modeling

- Linear element: S beam,
- 6 nodes,
- 1 linear element.

1.1.2.3 Results comparison

Result name	Result description	Reference value	AD value	Percent Difference
Tr	Factored tensile resistance	2579.85 kN	2579.85 kN	0.00%
r	Design ratio	18%	18%	0.00%

CREATE

SIMULATE

n°102	Cf≤Cr (13.2)		
	475.00 < 2579.85 kN	18%	
n°102	Tf/Tr + Mf/Mr ≤ 1 (13.9.1) 0.184 < 1.000	18%	

GRAITEC INC. 2030 Pie IX Blvd. Suite 201 Montreal QC Canada

vd. 480 N. Sam Houston PKWY E. 201 Suite 234 Ida Houston TX USA 77060

GRAITEC USA, INC.

T: (514) 935-1155 E: support.canada@graitec.com T: (281) 445-6161 E: support.usa@graitec.com